Data-driven approach for effective fatigue detection in drivers during driving events
نویسندگان
چکیده
The effectiveness of transportation and the safety road depend heavily on drivers during driving events. way people drive, likelihood accidents or other occurrences may both be strongly impacted by their actions behaviors. Promoting safe sensible behaviors requires an understanding traits variables that affect incidents. rising number traffic highlights critical necessity to rein in lessen prevalence careless driving. One most common causes these serious mistakes is drowsiness while To combat this problem, algorithms have been created identify signs driver weariness sound alarm. developed a flaw accuracy, it also takes too long before alerting them. Timeliness precision are two important factors preventing mishaps. Multiple datasets utilized improve methods for identifying exhaustion drowsiness. These data were acquired either through video streaming records driver's behavior from brain electroencephalogram (EEG) readings. In order create high-performance fatigue detection system, research designs novel firefly-integrated optimum cascaded convolutional neural network (FI-OCCNN). suggested approach offers greatest accuracy among existing classifiers, up 98.75%. studies further show recommended provide level detecting with quickest testing time (TT) compared all successful tiredness techniques.
منابع مشابه
P25: Driver Cognitive Fatigue Detection Based on Changes in EEG Frequency Bands in Non-Professional Drivers during a Simulated Driving Task
لطفاً به چکیده انگلیسی مراجعه شود.
متن کاملComplex Events Detection Using Data-Driven Concepts
Automatic event detection in a large collection of unconstrained videos is a challenging and important task. The key issue is to describe long complex video with high level semantic descriptors, which should find the regularity of events in the same category while distinguish those from different categories. This paper proposes a novel unsupervised approach to discover data-driven concepts from...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولp25: driver cognitive fatigue detection based on changes in eeg frequency bands in non-professional drivers during a simulated driving task
driver fatigue may impose the risk of crashes and is a leading cause of death in transportation industry. this study aimed to detect driver cognitive fatigue based on changes in eeg frequency bands in non-professional drivers during a simulated driving task. in a descriptive-analytical study, 12 healthy male car drivers took part in a two hour driving session on a simulated monotonous road, whi...
متن کاملmetrics for the detection of changed buildings in 3d old vector maps using als data (case study: isfahan city)
هدف از این تحقیق، ارزیابی و بهبود متریک های موجود جهت تایید صحت نقشه های قدیمی سه بعدی برداری با استفاده از ابر نقطه حاصل از لیزر اسکن جدید شهر اصفهان می باشد . بنابراین ابر نقطه حاصل از لیزر اسکنر با چگالی حدودا سه نقطه در هر متر مربع جهت شناسایی عوارض تغییر کرده در نقشه های قدیمی سه بعدی استفاده شده است. تمرکز ما در این تحقیق بر روی ساختمان به عنوان یکی از اصلی ترین عارضه های شهری می باشد. من...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Multidisciplinary Science Journal
سال: 2023
ISSN: ['2675-1240']
DOI: https://doi.org/10.31893/multiscience.2023ss0407